A NOTE ON UPPER AND LOWER δ-PRECONTINUOUS FUZZY MULTIFUNCTIONS

ANJANA BHATTACHARYYA*

Abstract :This paper is a continuation of [2]. In this paper a net in a topological space is used as a tool for characterizations of fuzzy upper (lower) δ -precontinuous multifunctions. Also we have established a mutual relationship between fuzzy upper (lower) semi-continuous multifunctions and fuzzy upper (lower) δ -precontinuous multifunctions.

Keywords : Fuzzy upper (lower) semi-continuity, fuzzy upper (lower) δ -precontinuity, δ_p convergence of a net in a topological space, limit point of a fuzzy net. 2000 AMS Subject Classification Code Primary 54 A 40

Secondary 54 C 99

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

Introduction

In 1985, Papageorgiou [7] introduced fuzzy multifunction, a function from an ordinary topological space X to a fuzzy topological space Y which carries an ordinary point of X to a fuzzy set in Y and from then a group of researchers are engaged themselves for studying different types of fuzzy multifunctions. Papageorgiou defined upper and lower inverses of a fuzzy multifunction. Afterwards, it was noticed in [6] that the definition of lower inverse of Papageorgiou was not natural and so this notion was redefined in [6] via q-coincidence and q-neighbourhoods of Pu and Liu [8] and ultimately some expected results were achieved in [6] by use of the new definition. With the definition of upper inverse as given in [7] and the definition of lower inverse as defined in [6], we introduce fuzzy upper (lower) δ -precontinuous multifunctions in [2] and in this paper we give some characterizations of this fuzzy multifunction specially via fuzzy nets.

Throughout this paper, (X, τ) or simply X will stand for an ordinary topological space, while by (Y, τ_Y) or simply by Y will always be denoted by a fuzzy topological space (fts, for short) in the sense of Chang [3]. The support of a fuzzy set A in Y will be denoted as supp A [11] and is defined by supp A = {y \in Y : A(y) \neq 0}. A fuzzy point [8] with the singleton support y \in Y and the value α (0 < $\alpha \le 1$) at y will be denoted by y_{α} . cl A and int A of a set A in X (respectively, a fuzzy set [11] in Y) respectively stand for the closure and interior of A in X (respectively, in Y). $0_{\rm Y}$ and $1_{\rm Y}$ are the constant fuzzy sets taking respectively the constant values 0 and 1 on Y. The complement of a fuzzy set A in Y will be denoted by $1_Y \setminus A$ [11], defined by $(1_Y \setminus A)(y) =$ 1 - A(y), for each $y \in Y$. For two fuzzy sets A and B in Y, we write $A \leq B$ iff $A(y) \leq B(y)$, for each $y \in Y$, while we write A q B to mean A is quasi-coincident (q-coincident, for short) with B [8] if there is some $y \in Y$ such that A(y) + B(y) > 1; the negation of A q B is written as A \overline{q} B. A (fuzzy) set A in X (resp. in Y) is called (fuzzy) regular open if A = int cl A([1]). A fuzzy set A in Y is called a fuzzy neighbourhood (fuzzy nbd, for short) of a fuzzy set B [8] if there exists a fuzzy open set U in Y such that $B \leq U \leq A$. A fuzzy set B is called a quasi neighbourhood (qnbd, for short) of a fuzzy set A in an fts Y if there is a fuzzy open set U in Y such that A q U \leq B [8]. If, in addition, B is fuzzy open (regular open) then B is called a fuzzy open (regular open) qnbd of A. In particular, a fuzzy set B in Y is a fuzzy open (resp. regular open) q-nbd of a fuzzy point y_a in Y if $y_a q U \le B$, for some fuzzy open (resp. regular open) set U in Y. The δ -interior [10] of a subset A of X is the union of all regular open sets of X contained in A and is denoted by

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

:

 δ – int A. A subset A of X is called δ -open [10] if $A = \delta$ – int A, i.e., a set is δ -open if it is the union of regular open sets. The complement of a δ -open set is called δ -closed. A set A of (X, τ) is δ -closed [10] iff $A = \delta cl A$ where $\delta cl A = \{x \in X : A \cap (\text{int } cl U) \neq \varphi, U \in \tau, x \in U\}$. A fuzzy point x_{α} is said to be a fuzzy δ -cluster point [4] of a fuzzy set A in an fts Y if every fuzzy regular open q-nbd U of x_{α} is q-coincident with A. The union of all fuzzy δ -cluster points of A is called the fuzzy δ -closure of A and is denoted by $\delta cl A$ [4]. A subset A is said to be δ -preopen [9] in X if $A \subseteq int (\delta cl A)$. The family of all δ -preopen sets in X is denoted by δ -PO(X) [9]. The δ -preinterior of a subset A [9] of X is defined to be the union of all δ -preopen sets contained in A and is denoted by $\delta - int A$. The complement of a δ -preopen set is called δ -preclosure of A [9] and is denoted by $\delta - pcl A$. A set A is δ -preopen (δ -preclosed) iff $A = \delta - pint A$ (resp. $A = \delta - pcl A$) [9].

1. SOME WELL KNOWN DEFINITIONS AND THEOREMS

In this section we recall some definitions and theorems for ready references.

DEFINITION 1.1. [7] Let (X, τ) be an ordinary topological space and (Y, τ_1) be an fts. We say that $F: X \to Y$ is a fuzzy multifunction if corresponding to each $x \in X$, F(x) is a unique fuzzy set in Y.

Henceforth by $F: X \to Y$ we shall mean a fuzzy multifunction in the above sense.

DEFINITION 1.2. [7,6] For a fuzzy multifunction $F: X \to Y$, the upper inverse F^+ and lower inverse F^- are defined as follows :

For any fuzzy set A in Y, $F^+(A) = \{x \in X : F(x) \le A\}, F^-(A) = \{x \in X : F(x)qA\}.$

The relation between the upper and lower inverses of a fuzzy multifunction is an follows

International Journal of Marketing and Technology http://www.ijmra.us

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

THEOREM 1.3. [6] For a fuzzy multifunction $F: X \to Y$, we have $F^{-}(1_Y \setminus A) = X \setminus F^{+}(A)$, for any fuzzy set A in Y.

DEFINITION 1.4. [6] A fuzzy multifunction $F: X \to Y$ is said to be

- (a) fuzzy upper semi-continuous at a point $x \in X$, if for each fuzzy open set V in Y with $F(x) \le V$, , there exists an open set U in X containing x such that $F(U) \le V$,
- (b) fuzzy lower semi-continuous at a point $x \in X$, if for each fuzzy open set V in Y with F(x)qV, there exists an open set U in X containing x such that F(u)qV, for all $u \in U$,
- (c) Fuzzy upper (lower) semi-continuous if F has this property at each point $x \in X$.

DEFINITION 1.5. [2] A fuzzy multifunction $F: X \to Y$ is said to be

- (a) fuzzy upper δ -precontinuous at a point $x \in X$, if for each fuzzy open set V in Y with $F(x) \leq V$, , there exists $U \in \delta - PO(X)$ containing x such that $F(U) \leq V$,
- (b) fuzzy lower δ -precontinuous at a point $x \in X$, if for each fuzzy open set V in Y with F(x)qV, there exists $U \in \delta - PO(X)$ containing x such that F(u)qV, for all $u \in U$,
- (c) Fuzzy upper (lower) δ -precontinuous if F has this property at each point $x \in X$.

THEOREM 1.6. [2] A fuzzy multifunction $F: X \to Y$ is fuzzy upper δ -precontinuous iff $F^+(V) \in \delta - PO(X)$, for any fuzzy open set V in Y.

THEOREM 1.7. [2] A fuzzy multifunction $F: X \to Y$ is fuzzy lower δ -precontinuous iff $F^{-}(V) \in \delta - PO(X)$, for any fuzzy open set V in Y.

REMARK 1.8. It is clear from Definitions 1.4 and 1.5, that fuzzy upper (lower) semi-continuous multifunctions are fuzzy upper (lower) δ -precontinuous multifunctions. But the converse may not be true as seen from the following example.

EXAMPLE 1.9. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{b\}, \{a, c\}\}$, Y = [0,1], $\tau_Y = \{0_Y, 1_Y, B\}$ where B(y) = 0.5, for all $y \in Y$. Then (X, τ) and (Y, τ_Y) are topological space and an fts respectively.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

Volume 3, Issue 11

<u>ISSN: 2249-1058</u>

Clearly, $\{b\}, \{a, c\}$ are δ -open as well as δ -closed in X. Let $F: X \to Y$ be defined by F(a) = A, F(b) = B, F(c) = C where A(y) = 0.45, C(y) = 0.61, for all $y \in Y$. $F^+(B) = \{x \in X : F(x) \le B\} = \{a, b\} (\subseteq \operatorname{int} \delta cl(\{a, b\}) = \operatorname{int} X = X) \in \delta - PO(X),$

 $F^+(0_Y) = \phi, F^+(1_Y) = X$ and so by Theorem 1.6, F^+ is fuzzy upper δ -precontinuous multifunction. But $a \in X$, $F(a) = A \le B \in \tau_Y$. Then $\{a,c\}, X$ are the only open sets in X containing a. $F(\{a,c\}) \le B$ as $F(c) = C \le B$. Then also $F(X) \le B$. Therefore, F is not fuzzy semi-continuous at a. Again, $F^-(B) = \{x \in X : F(x)qB\} = \{c\} (\subseteq \operatorname{int} \delta cl(\{c\}) = \operatorname{int} \{a,c\}) = \{a,c\} \in \delta - PO(X)$. Then by Theorem 1.7, F is fuzzy lower δ -precontinuous. But $c \in X$, $F(c) = CqB \in \tau_Y$. The only open sets containing c are $\{a,c\}$ and X. Now $F(\{a,c\})\overline{q}B$, for all $x \in \{a,c\}$ as $F(a) = A\overline{q}B, a \notin \{a,c\}$. Hence F is not fuzzy lower semi-continuous at c.

Now we recall the δ -preregularity of a topological space from [9] under which fuzzy upper (lower) δ -precontinuity implies fuzzy upper (lower) semi- continuity.

DEFINITION 1.10. A topological space (X, τ) is said to be δ -preregular if for each δ -preclosed set *F* in *X* and each point $x \in X$ with $x \notin F$, there exists an open set *U* and a δ -preopen set *V* in *X* such that $x \in U, F \subseteq V$ and $U \cap V = \emptyset$.

THEOREM 1.11. [9] A topological space (X, τ) is δ -preregular iff for each point $x \in X$ and each $U \in \delta - PO(X)$ containing x, there exists $V \in \tau$ such that $x \in V \subseteq \delta - pclV \subseteq U$.

THEOREM 1.12. Let (X, τ) be a δ -preregular space and $F : X \to Y$ be fuzzy upper δ -precontinuous multifunction. Then *F* is also fuzzy upper semi-continuous.

PROOF. Let $x \in X$ and V be any fuzzy open set in Y with $F(x) \leq V$. As F is fuzzy upper δ -precontinuous, there exists $U \in \delta - PO(X)$ containing x such that $U \subseteq F^+(V)$. By Theorem 1.11, there exists an open set W in X such that $x \in W \subseteq \delta - pclW \subseteq U$. Then $x \in W \subseteq U \subseteq F^+(V)$. Hence F is fuzzy upper semi-continuous.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

THEOREM 1.13. Let (X, τ) be a δ -preregular space and $F : X \to Y$ be fuzzy lower δ -precontinuous multifunction. Then *F* is also fuzzy lower semi-continuous.

PROOF. Let $x \in X$ and V be any fuzzy open set in Y with F(x)qV. As F is fuzzy lower δ -precontinuous, there exists $U \in \delta - PO(X)$ containing x such that $U \subseteq F^-(V)$. By Theorem 1.11, there exists an open set W in X such that $x \in W \subseteq \delta - pclW \subseteq U$. Then $x \in W \subseteq U \subseteq F^-(V)$. Hence F is fuzzy lower semi-continuous.

2. CHARACTERIZATIONS OF FUZZY UPPER (LOWER) δ -PRECONTINUOUS MULTIFUNCTIONS VIA A NET (FUZZY NET) IN X (IN Y).

In this section a new type of convergence of a net in an ordinary topological space has been introduced and we characterize fuzzy upper (lower) δ -precontinuous multifunctions via this newly defined convergence of a net. Also we define fuzzy inferior limit points of a fuzzy net and also a new type of convergence of a fuzzy net has been introduced and characterize fuzzy lower δ -precontinuous multifunctions via these new concepts.

DEFINITION 2.1. A net $\{S_n : n \in (D, \geq)\}$ in a topological space X with the directed set (D, \geq) as the domain, is said to δ_p -converge to a point $x \in X$ if for each δ -preopen set $U \in X$ containing x, there exists $m \in D$ such that $S_n \in U$, for all $n \geq m$ $(n \in D)$.

THEOREM 2.2. For a fuzzy multifunction $F: X \to Y$, the following statements are equivalent

(a) *F* is fuzzy lower δ -precontinuous.

- (b) For each fuzzy open set V in Y, $F^{-}(V) \subseteq \delta p$ int $F^{-}(V)$.
- (c) For each fuzzy closed set V in Y, $\delta pclF^+(V) \subseteq F^+(V)$.

http://www.ijmra.us

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology

Volume 3, Issue 11

<u>ISSN: 2249-1058</u>

(d) For each point $x \in X$, if $\{S_n : n \in (D, \geq)\}$ is a net in X, δ_p -converge to x, then for each fuzzy open set V in Y with F(x)qV, there exists $m \in D$ such that $F(S_n)qV$, for all $n \geq m$ ($n \in D$).

PROOF. (a) \Leftrightarrow (b) : Follows from Theorem 1.7.

(b) \Rightarrow (c) : Let *G* be a fuzzy closed set in *Y*. Then $1_Y \setminus G$ is fuzzy open in *Y*. By (b), $F^-(1_Y \setminus G) \subseteq \delta - pint F^-(1_Y \setminus G) \Rightarrow X \setminus F^+(G) \subseteq X \setminus \delta - pclF^+(G) \Rightarrow \delta - pclF^+(G) \subseteq F^+(G)$.

 $(c) \Rightarrow (b)$: Retracing the above steps, we get the result.

(b) \Rightarrow (d) : Let $\{S_n : n \in (D, \geq)\}$ be a net in X, δ_p -converge to $x \in X$ and V be a fuzzy open set in Y with F(x)qV. Then $x \in F^-(V)$. By (b), there exists $U \in \delta - PO(X)$ containing xsuch that $U \subseteq F^-(V)$. Since the net δ_p -converge to x, and $U \in \delta - PO(X)$ containing x, by Definition 2.1, there exists $m \in D$ such that $S_n \in U$, for all $n \ge m$ $(n \in D) \Rightarrow S_n \in F^-(V)$, for all $n \ge m \Rightarrow F(S_n)qV$, for all $n \ge m$.

(d) \Rightarrow (a) : If *F* is not fuzzy lower δ -precontinuous at some point $x \in X$. Then there exists a fuzzy open set *V* in *Y* with F(x)qV such that for each δ -preopen set *U* in *X* containing *x* such that $F(x_U)\overline{q}V$, for some $x_U \in U$. Let (D,\geq) be the directed set consisting of all pairs (x_U,U) with $(x_U,U) \geq (x_W,W)$ iff $U \subseteq W$ (U,W) being any δ -preopen sets in *X* containing *x* and $F(x_U)\overline{q}U$, $F(x_W)\overline{q}W$ and consider the net $S(x_U,U) = x_U$ in *X*. Then evidently, the net $\{S_n : n \in (D,\geq)\}$ is δ_p -convergent to *x*, but $F(S_n)\overline{q}V$, for each $n \in D$, contradicting (d).

THEOREM 2.3. For a fuzzy multifunction $F : X \to Y$, the following statements are equivalent :

(a) F is fuzzy upper δ -precontinuous.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

- (b) For each fuzzy open set V of Y, $F^+(V) \subseteq \delta p \text{ int } F^+(V)$.
- (c) For each fuzzy closed set V of Y, $\delta pclF^{-}(V) \subseteq F^{-}(V)$.

(d) For each point $x \in X$, if $\{S_n : n \in (D, \geq)\}$ is a net in X which is δ_p -convergent to x, then for each fuzzy open set V in Y with $x \in F^+(V)$, the net is eventually in $F^+(V)$.

PROOF. (a) \Leftrightarrow (b) : Follows from Theorem 1.6.

(b) \Rightarrow (c) : Let G be a fuzzy closed set in Y. Then $1_Y \setminus G$ is fuzzy open in Y. By (b), $F^+(1_Y \setminus G) \subseteq \delta - p$ int $F^+(1_Y \setminus G) \Rightarrow X \setminus F^-(G) \subseteq X \setminus \delta - pclF^-(G) \Rightarrow \delta - pclF^-G) \subseteq F^-(G)$.

 $(c) \Rightarrow (b)$: Retracing the above steps, we get the result.

(b) \Rightarrow (d) : Let $\{x_n : n \in (D, \geq)\}$ be a net in X, δ_p -converge to x and V be a fuzzy open set in Y with $x \in F^+(V)$. By (b), there exists $U \in \delta - PO(X)$ containing x such that $U \subseteq F^+(V)$. Since the net δ_p -converge to x, and $U \in \delta - PO(X)$ containing x, by Definition 2.1, there exists $m \in D$ such that $x_n \in U$, for all $n \geq m$ $(n \in D) \Rightarrow x_n \in F^+(V)$, for all $n \geq m$. Hence the net is eventually in $F^+(V)$.

(d) \Rightarrow (a) : If *F* is not fuzzy upper δ -precontinuous at some point $x \in X$. Then there exists a fuzzy open set *V* in *Y* with $F(x) \in V$ such that for each δ -preopen set *U* in *X* containing *x* such that $F(x_U) \leq V$, for some $x_U \in U$. Let (D, \geq) be the directed set consisting of all pairs (x_U, U) with $(x_U, U) \geq (x_V, V)$ iff $U \subseteq V$ (*U*, *V* being any δ -preopen sets in *X* containing *x*) and consider the net $S(x_U, U) = x_U$ in *X*. Then evidently, the net $\{S_n : n \in (D, \geq)\}$ is δ_p -convergent to *x*, but $F(S_n) \leq V$, i.e., $S_n \notin F^+(V)$ for each $n \in D$, contradicting (d).

DEFINITION 2.4. Let (Y, τ_1) be an fts and $\{S_n : n \in (D, \geq)\}$ be a fuzzy net in Y. A fuzzy point y_α in Y is said to be a fuzzy inferior limit point of the net if for each fuzzy open q-nbd V of y_α ,

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

<u>ISSN: 2249-1058</u>

there exists $m \in D$ such that $S_n qV$, for all $n \ge m$ ($n \in D$). The union of all fuzzy inferior limit points of the net will be denoted by $f - \inf - LiS_n$.

THEOREM 2.5. A fuzzy multifunction $F: X \to Y$ is fuzzy lower δ -precontinuous at a point $x \in X$ iff for any net $\{S_n : n \in (D, \geq)\}$ in X, which δ_p -converges to x, the net of fuzzy sets $\{F(S_n) : n \in (D, \geq)\}$ satisfies the relation $clF(x) \leq f - \inf - LiF(S_n)$.

PROOF. Let *F* be fuzzy lower δ -precontinuous at $x \in X$ and $\{S_n : n \in (D, \geq)\}$ be a net in *X*, which δ_p -converge to *x*. If $y_\alpha \leq clF(x)$, then for all fuzzy open q-nbd *V* of y_α , $VqF(x) \Rightarrow x \in F^-(V)$. Since *F* is fuzzy lower δ -precontinuous, by Theorem 2.2 (a) \Rightarrow (b), $F^-(V) \subseteq \delta - p$ int $F^-(V) \Rightarrow x \in U \subseteq F^-(V)$, for some $U \in \delta - PO(X)$ containing *x*. Then there exists $m \in D$ such that $S_n \in U \subseteq F^-(V)$, for all $n \geq m$ $(n \in D)$, i.e., $F(S_n)\overline{q}V$, for all $n \geq m$. Consequently, $y_\alpha \in f - inf - LiF(S_n)$.

Conversely, let F be not fuzzy lower δ -precontinuous at x. Then by Theorem 2.2 (a) \Leftrightarrow (d), there exists a net $\{S_n : n \in (D, \geq)\}$ in X, which δ_p -converges to x and there exists a fuzzy open set V in Y with F(x)qV, such that for any $n \in D$, we have $F(S_m)\overline{q}V$, for some $m \geq n$ ($m \in D$). Now there exists $y \in \sup p(F(x) \cap V)$ such that $y_{\alpha}qV$ where $\alpha = [F(x)](y)$. Thus $y_{\alpha} \leq f - \inf - LiF(S_n)$. But $y_{\alpha} \leq F(x)$ and hence $y_{\alpha} \leq clF(x)$. Thus $clF(x) \leq f - \inf - LiF(S_n)$.

DEFINITION 2.6. Let (Y, τ_1) be an fts and y_{α} be a fuzzy point in Y. Then a fuzzy net $\{S_n : n \in (D, \geq)\}$ is said to converge to y_{α} , written as $S_n \to y_{\alpha}$, if for any fuzzy open q-nbd U of y_{α} , there exists $m \in D$ such that $S_n q U$, for all $n \geq m$ $(n \in D)$.

THEOREM 2.7. A fuzzy multifunction $F: X \to Y$ is fuzzy lower δ -precontinuous at a point $x \in X$ iff for every fuzzy point $y_t \leq F(x)$ and for every net $\{x_\alpha : \alpha \in D\}$ in X, δ_p -converging

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

to x, there exists a subnet $\{z_{\beta} : \beta \in E\}$ of $\{x_{\alpha} : \alpha \in D\}$ and there exists a fuzzy point $A^{\beta} \leq F(z_{\beta})$, corresponding to each $\beta \in E$ such that the fuzzy net $\{A^{\beta} : \beta \in E\}$ is fuzzy convergent to y_t .

PROOF. Let *F* be fuzzy lower δ -precontinuous at $x \in X$ and $\{x_a : \alpha \in D\}$ be a net in $X \delta_p$ converging to *x*. Also, let y_i be a fuzzy point such that $y_i \leq F(x)$. For each fuzzy open q-nbd *V* of y_i , by fuzzy lower δ -precontinuity of *F*, there exists $U_V \in \delta - PO(X)$ containing *x* such
that F(x)qV, for all $x \in U_V$. Since $\{x_a : \alpha \in D\}$ is δ_p -convergent to *x*, there exists $\alpha_V \in D$ such that $\beta \geq \alpha_V$ and $\beta \in D \Rightarrow x_\beta \in U_V \Rightarrow F(x_\beta)qV$. Let $D_V = \{\beta \in D : \beta \geq \alpha_V\}$ and put $E = \bigcup_{V \in \Gamma} [D_V \times \{V\}]$ where Γ denotes the system of all fuzzy open q-nbds of y_i . Clearly *E* is a
directed set under " \succeq " given by $(\alpha, V) \succeq (\alpha', V')$ iff $\alpha \geq \alpha'$ in *D* and $V \leq V'$. For any β (=(α, V)) $\in E$, set $z_\beta = x_\alpha$. Then $\{z_\beta : \beta \in E\}$ is a subnet of the net $\{x_a : \alpha \in D\}$. Infact, for any $\alpha \in D$, consider any $(\alpha_V, V) \in E$ and find $\alpha' \in D$ such that $\alpha' \geq \alpha, \alpha_V$. Then $(\alpha', V) \in E$ such
that whenever $(\alpha'', W) \in E$ (where $W \in \Gamma$) with $(\alpha'', W) \succeq (\alpha', V)$, one has $\alpha'' \geq \alpha'$. For any β (=((α, V))) $\in E$, we have $F(x_\alpha)qV$ so that $F(z_\beta)qV$. Choose a fuzzy point $A^\beta \leq F(z_\beta)$ such that $A^{\beta}qV$. Let $W \in \Gamma$ be arbitrary. Now $\beta(=(\alpha_w, W)) \in E$ be such that $F(z_\beta)qW$. If $\gamma(=(\alpha, V')) \in E$ with $(\alpha, V') \succeq (\alpha_w, W)$, then $\alpha \geq \alpha_w$ and $V' \leq W$. Also $A^{\gamma}qV' \leq W \Rightarrow A^{\gamma}qW$.
Thus $\{A^\beta : \beta \in E\}$ is fuzzy convergent to y_i .

Conversely, let *F* be not fuzzy lower δ -precontinuous at *x*. Then there exists a fuzzy open set *G* in *Y* such that $x \in F^-(G)$, and for every $U \in \delta - PO(X)$ containing *x*, there exists $x_U \in U$ for which $F(x_U)\overline{q}G$. Then $\{x_U: U \in \Gamma\}$ where Γ is the system of all δ -preopen sets in *X* containing *x* (directed by inclusion relation) is a net in *X*, which δ_p -converges to *x*. Let $y_t \leq F(x)$ be such that $y_t q G$ (such y_t exists as F(x)q G). By hypothesis, there is a subnet $\{z_W: W \in (\Sigma, \geq)\}$ of the net $\{x_U: U \in \Gamma\}$ and corresponding to each $W \in \Sigma$, there exists a fuzzy point $A^W \leq F(z_W)$ such that the fuzzy net $\{A^W: W \in \Sigma\}$ is fuzzy convergent to y_t . Since *G* is a fuzzy open q-nbd of y_t , there exists $W'_0 \in \Sigma$ such that $A^W qG$, for all $W \geq W'_0$ ($W \in \Sigma$) ... (1). Now, since

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

 $\{z_W : W \in \Sigma\}$ is a subnet of $\{x_U : U \in \Gamma\}$, there exists a function $\varphi : \Sigma \to \Gamma$ which is cofinal and $z_W = x_{\varphi(W)}$, for each $W \in \Sigma$. Consider any $U \in \Gamma$. Then there exists $W_0^{"} \in \Sigma$ such that $\varphi(W) \subseteq U$ for each $W \ge W_0^{"}$ in Σ ($W \in \Sigma$). Let $W \in \Sigma$ be such that $W \ge W_0^{'}, W_0^{"}$. Then $W \ge W_0^{'}$ and hence $A^W q G$. Also, $z_W = x_{\varphi(W)}$ and hence $F(z_W)\overline{q}G$. But $A^W \le F(z_W) \Rightarrow A^W \overline{q} G$, contradicting (1).

REFERENCES

- 1. Azad, K.K.; On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, Jour. Math. Anal. Appl. 82 (1981), 14-32.
- Bhattacharyya, Anjana; Upper and lower δ-precontinuous fuzzy multifunctions, Accepted for publication in "International Journal of Advancement in Research and Technology, vol. 2, Issue 7, July 2013.
- 3. Chang, C.L.; Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- 4. Ganguly, S. and Saha, S. ; On separation axioms and T_1 -fuzzy continuity, Fuzzy Sets and Systems 16 (1985), 265-275.
- 5. Ganguly, S. and Saha, S. ; A note on compactness in fuzzy setting, Fuzzy Sets and Systems 34 (1990), 117-124.
- 6. Mukherjee, M.N. and Malakar, S. ; On almost continuous and weakly continuous fuzzy multifunctions, Fuzzy Sets and Systems 41 (1991), 113-125.
- Papageorgiou, N.S.; Fuzzy topology and fuzzy multifunctions, Jour. Math. Anal. Appl. 109 (1985), 397-425.
- 8. Pu, Pao Ming and Liu, Ying Ming ; Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith convergence, Jour. Math. Anal. Appl. 76 (1980), 571-599.
- Raychaudhuri, S. ; Concerning δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica 21(4) (1993), 357-366.
- 10. Velicko, N.V.; H-closed topological spaces, Amer. Math. Soc. Transl. 78 (1968), 103-118.
- 11. Zadeh, L.A.; Fuzzy Sets, Inform Control 8 (1965), 338-353.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us